Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Molecular mechanisms of persistent antigenic stimulation in cytomegalovirus infection

Objective

Cytomegalovirus (CMV) is a ubiquitous herpesvirus, latently persisting in the majority of the adult population worldwide. In these hosts, CMV-specific memory cells dominate the immune memory compartment. It follows that CMV-specific T-cells dominate the memory compartment of the majority of the human population worldwide.
I propose to define within this project the molecular mechanisms driving the inflation of CMV-specific T-cells. My central hypothesis is that expression levels of CMV peptides during latency, along with the avidity of T-cell receptors for peptide MHC complexes, define the amplitude of T-cell responses. A corollary hypothesis is that vigorous T-cell responses in CMV infection are defined by factors that drive CMV gene expression during latency, such as inflammatory stimuli.
This hypothesis will be verified in a model of in vivo CMV latency and immune monitoring. We will benefit from state-of-the-art inducible genetic systems, where recombinant mouse CMV will be deployed in transgenic mice. In latently infected mice, we will induce or suppress the expression of immunodominant CMV genes, and define downstream effects on T-cell response kinetics. In parallel, we will define the T-cell responses to high and low avidity peptides.
Understanding the mechanisms driving the strong T-cell response to CMV is of outstanding biological and clinical relevance. If strong T-cell responses may be redirected to target heterologous antigens of interest, CMV-based vaccine vectors might potentially allow the development of HIV or tumor vaccines. On the other hand, it is speculated that the control of latent CMV may overcommit the aging immune system and exhaust the T-cell repertoire. Given the CMV pervasiveness, discerning the mechanisms of its T-cell induction may define novel molecular targets for rejuvenation strategies. In either case, the proposed research has groundbreaking potential in the field of infection and immunity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091118
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
EU contribution
€ 1 498 456,00
Address
INHOFFENSTRASSE 7
38124 Braunschweig
Germany

See on map

Region
Niedersachsen Braunschweig Braunschweig, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0