Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Stimuli Responsive Polymer Nanotubes by Initiated Chemical Vapor Deposition

Objective

One dimensional nanotubular structures have a wide range of applications due to their unique physical and chemical properties that are different from the bulk materials. Metal and semiconductor nanotubes are being used as sensors, optoelectronic devices or transistors. Furthermore, polymeric nanotubes have great potential as biomedical devices due to the biocompatible nature of the polymers used. However, they are not as widely studied due to the difficulty of fabricating the nanotubular structures using common thin film deposition techniques. In this research, we propose to use initiated Chemical Vapor Deposition (iCVD) to fabricate polymer nanotubes. iCVD technique has been shown to successfully deposit polymer thin films while keeping the chemical moieties of the monomers intact. Furthermore, the crosslinking density and the wall thickness of the nanotubes can easily be tuned using iCVD as opposed to other techniques, such as solution-based techniques where the polymer should be soluble.
Our proposal aims to develop nanocarrier systems of polymer nanotubes for various potential applications. A wide range of stimuli responsive polymers (SRP) will be used to fabricate the nanotubes and the mechanical and response characteristics of these nanostructures as a function of crosslinking density will be explored. In the next stage, coaxial nanotubes with both layers made of SRPs will be fabricated and the effects of the interaction between the layers on the release mechanism will be studied.
The results of these studies will help us better understand the dominant mechanisms during uptake and release and thus enable us to fabricate the nanocarriers according to the response desired. Furthermore, these nanotubes with improved performance will have significant impact as drug delivery systems or sensors.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

SABANCI UNIVERSITESI
EU contribution
€ 75 000,00
Address
ORTA MAHALLE UNIVERSITE CADDESI N 27 TUZLA
34956 Istanbul
Türkiye

See on map

Region
İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0