Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Cascade rates of magnetohydrodynamic turbulence in the solar wind

Objective

Turbulence is one the most important unsolved problems of classical physics. Plasma occurs in states of turbulence under a wide range of conditions including space and astrophysical plasmas as well as those produced in laboratory confinement devices. Magnetohydrodynamics (MHD) is the simplest fluid approach to study plasma dynamics. MHD turbulence takes place in many practical applications (solar atmosphere, interstellar medium etc.). Due to this reason MHD turbulence has been intensively studied during the last several decades theoretically as well as by means of high resolution direct numerical simulations. Currently there exist more than ten different theoretical models of anisotropic MHD turbulence. With an abundance of in situ spacecraft measurements, the solar wind is a unique natural laboratory that can be used to test theories and improve our understanding of the basic mechanisms involved in MHD turbulence. Presented project implies the study of cascade rates in the solar wind turbulence using generalized Yaglom’s relation, for determination of the role of MHD turbulence in the solar wind heating, and for testing predictions of various theoretical models of MHD turbulence. The objectives of the presented project are: (i) Derivation of the generalized Yaglom’s relation for MHD turbulence taking into account the effect of expansion of the solar wind; (ii) determination of the role of MHD turbulence in the solar wind heating applying generalized Yaglom’s relation to the data of the solar wind fluctuations; (iii) determination of the relation between the energies and energy dissipation rates for the fast and slow solar wind data and comparison of the obtained results with the predictions of different theoretical model of MHD turbulence; (iv) to derive the analogue of the spectral pinning effect for MHD turbulence in case of kinetic dissipation and to apply it for the study of the solar wind data

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITA DELLA CALABRIA
EU contribution
€ 244 575,00
Address
VIA PIETRO BUCCI 7/11/B
87036 Arcavacata Di Rende
Italy

See on map

Region
Sud Calabria Cosenza
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0