Objective
Turbulence is one the most important unsolved problems of classical physics. Plasma occurs in states of turbulence under a wide range of conditions including space and astrophysical plasmas as well as those produced in laboratory confinement devices. Magnetohydrodynamics (MHD) is the simplest fluid approach to study plasma dynamics. MHD turbulence takes place in many practical applications (solar atmosphere, interstellar medium etc.). Due to this reason MHD turbulence has been intensively studied during the last several decades theoretically as well as by means of high resolution direct numerical simulations. Currently there exist more than ten different theoretical models of anisotropic MHD turbulence. With an abundance of in situ spacecraft measurements, the solar wind is a unique natural laboratory that can be used to test theories and improve our understanding of the basic mechanisms involved in MHD turbulence. Presented project implies the study of cascade rates in the solar wind turbulence using generalized Yaglom’s relation, for determination of the role of MHD turbulence in the solar wind heating, and for testing predictions of various theoretical models of MHD turbulence. The objectives of the presented project are: (i) Derivation of the generalized Yaglom’s relation for MHD turbulence taking into account the effect of expansion of the solar wind; (ii) determination of the role of MHD turbulence in the solar wind heating applying generalized Yaglom’s relation to the data of the solar wind fluctuations; (iii) determination of the relation between the energies and energy dissipation rates for the fast and slow solar wind data and comparison of the obtained results with the predictions of different theoretical model of MHD turbulence; (iv) to derive the analogue of the spectral pinning effect for MHD turbulence in case of kinetic dissipation and to apply it for the study of the solar wind data
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- natural sciences physical sciences astronomy galactic astronomy solar physics
- natural sciences physical sciences astronomy planetary sciences celestial mechanics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2010-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
87036 Arcavacata Di Rende
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.