Skip to main content
European Commission logo print header

ATOMIC LAYER DEPOSITION OF METAL OXIDES FOR PHOTOVOLTAIC SOLAR CELLS

Cel

"The proposal lies within the field of RENEWABLE ENERGY and aims to assist in achieving the EU climate and energy goals. Photovoltaics (PV) will have a significant impact on the energy market when the energy conversion efficiency of solar cells is enhanced. Most types of PV cells employ functional thin films and cell efficiency can be improved tailoring the properties of such films. Major challenges are to enhance photon absorption, reduce electron-hole recombination and improve charge transport.

Atomic layer deposition (ALD) is an ultrathin-layer deposition technique well known for its excellent uniformity, conformability and composition control. Recently, this method has proven promising for PV through excellent surface passivation of crystalline Si cells by Al2O3. The full potential of ALD for PV cell manufacturing is yet to be exploited. This is why this project will explore the use of ALD-synthesized oxide films, in particular Zn-based and related oxides (In2O3, SnO2), for different types of solar cells. These films will be used as specific layers, such as tunnel layer in 1st generation crystalline Si cells; transparent conductive oxide or window layer in 2nd generation amorphous Si and CIGS thin film cells; and high surface-area photoanode in 3rd generation nano-based cells. After process development using various ALD configurations, different compositions and doping options will be investigated and characterised. The screening results will indicate the best candidates for conducting in-depth studies. Experimental and statistical techniques will be combined to establish the physical relationships between process parameters and film characteristics. Subsequently, optimisation and validation tests will be conducted through selected demonstrator experiments.

The applicant is to attain total research autonomy and maturity at the end of the project. Transversal benefits for other energy devices (fuel cells, Li-ion batteries, etc.) are expected from this project."

Zaproszenie do składania wniosków

FP7-PEOPLE-2010-IEF
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

TECHNISCHE UNIVERSITEIT EINDHOVEN
Wkład UE
€ 184 540,80
Adres
GROENE LOPER 3
5612 AE Eindhoven
Niderlandy

Zobacz na mapie

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Alfons W.J. Bruekers (Mr.)
Linki
Koszt całkowity
Brak danych