Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanostructured energy-harvesting thermoelectrics based on Mg2Si

Objective

The core concept of the ThermoMag project revolves around developing and delivering new energy-harvesting thermoelectric materials and proof-of-concept modules, based on nanostructured bulk Mg2Si solid solutions. This class of TE material would have the following attractive characteristics: (i) ZT value >1.5 for both n-type and p-type doped material, (ii) operational in the temperature range 300-550ºC, (iii) very low density of 2 g/cm3, especially suitable for transportation applications, (iv) high melting point of >1000ºC, and good thermal stability up to 600ºC, (v) good oxidation and corrosion resistance and mechanical strength, (vi) isotropic thermoelectric properties, (vii) non-toxicity of elements, (viii) widely-available pure materials with very large EU supply chains and (ix) low raw material cost <15 Euros/kg, combined with low manufacturing costs. A number of methods will be looked at to achieve 3D bulk nanocrystalline Mg2Si including low-cost combustion synthesis, mechanical alloying and high-temperature solid-state synthesis in inert crucibles. Various ball milling approaches will be used to produce doped Mg2Si nanoparticle constituents that can then be compressed via rapid spark plasma sintering or hot pressing in vacuum. 3D nanocomposite material will also be produced with the addition or in-situ production of inert nanoparticles, as well as thin films using multilayer approaches. Doping using various elements will be predicted by ab-initio density-functional theory modelling. These methods will lead to the safe production of nanostructured n- and p-type legs for further thermoelectric and materials testing. In order to prove the concept works, demonstrator modules will be assembled that integrate the new energy-harvesting nanostructured material. Such modules have widespread applications in automotive, aerospace and manufacturing sectors, where waste heat can be usefully recovered, with clear environmental benefits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2010-SMALL-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

EUROPEAN SPACE AGENCY
EU contribution
€ 661 094,50
Address
8-10 RUE MARIO-NIKIS
75015 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Other
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (16)

My booklet 0 0