Objective
Micro- and nanomechanical resonators are currently receiving enormous interest due to their potential as a new class of quantum systems, with possible impact ranging from the foundations of quantum physics, quantum limited sensing and quantum information processing. A particularly successful system is the optomechanical oscillator, where the radiation pressure of light is used to manipulate and read-out the dynamics of the mechanical system. To date experiments have demonstrated individually each key ingredient for the preparation of optomechanical systems in the quantum regime, however still operating in the classical domain. In this proposal we want to take the field one step further, by increasing the optomechanical coupling strength to a level where single-photon effects become dominant. In this regime, one can exploit the full non-linear character of the interaction. This will be achieved by designing and optimizing optomechanical crystals, a novel system where the photonic and phononic modes are localized in a single device, which have recently been developed by the outgoing host. These systems currently outperform all existing optomechanical devices in coupling strength and are ideal candidates for single-photon quantum optomechanics. Envisioned experiments range from answering fundamental questions in quantum physics to quantum information processing tasks - optomechanical crystals can be engineered on-chip, with the potential for realizing a mass-maufacturable quantum technology. Also, the frequencies of the optomechanical crystals can be designed to allow for ground-state preparation when cooled in a dilution refrigerator, which is an enabling regime for observing quantum effects even with coherent optical input fields. The ideal match of the expertise of the outgoing host and the experienced researcher in quantum optics and (quantum) opto-mechanics will result in ground-breaking new developments in this young and rapidly expanding field.
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics cavity optomechanics
 - natural sciences physical sciences atomic physics
 - engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
 - natural sciences physical sciences quantum physics quantum optics
 
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
    Programme(s)
    
      
      
        Multi-annual funding programmes that define the EU’s priorities for research and innovation.
        
      
    
  
      
  Multi-annual funding programmes that define the EU’s priorities for research and innovation.
    Topic(s)
    
      
      
        Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
        
      
    
  
      
  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
      Call for proposal
      
        
        
          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
          
        
      
    
          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
        FP7-PEOPLE-2010-IOF
          
            See other projects for this call
          
      
    Funding Scheme
    
      
      
        Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
        
      
    
  
  
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.