Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Probabilistically Analysable Real-Time Systems

Project description


Embedded Systems Design
Verification of timing properties of CRTE systems (single- and multi- core) using Probabilistic Timing Analysis

There is an ever-increasing demand both for new functionality and for reduced development and production costs for all kinds of Critical Real-Time Embedded (CRTE) systems (safety, mission or business critical). Moreover, new functionality demands can only be delivered by more complex software and aggressive hardware acceleration features like memory hierarchies and multicore processors. However, these greatly increase system complexity, making it much more difficult to analyse applications for their temporal behaviour. Another key problem of CRTE systems is the need to prove that they operate correctly, satisfying all temporal constraints. The current generation of platforms, despite being based on comparatively simple and old processor technologies, are already extremely difficult to analyse for their temporal behaviour, and resulting errors in operation, cost EU industries billions of Euros annually in warranty and post-production costs.
The PROARTIS thesis is that the timing behaviour of systems that use advanced hardware features like multicore CPUs and complex memory hierarchies can be analysed effectively by probabilistic timing analysis techniques that reduce the risk of temporal pathological cases to quantifiably negligible levels. Preliminary research results in cache replacement policies by members of the PROARTIS consortium strongly support this claim. PROARTIS defines new hardware and software architecture paradigms based on the concept of randomisation that, with minimal changes to current processes and methods, guarantee timing behaviours that can be analysed with probabilistic techniques. PROARTIS uses a holistic approach in which probabilistic analysis extends from hardware design, compiler and real time operating system to applications. On top of this platform, we will build probabilistic timing analysis methods based on current commercial tools. We will validate our approach via an industrial case study.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
EU contribution
€ 578 671,00
Address
CALLE JORDI GIRONA 31
08034 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0