Objective
Genetically identical cells that live in a homogeneous environment often show substantial variation in their biological traits; such variation is called phenotypic noise. The level of phenotypic noise has a genetic basis, suggesting that higher levels of phenotypic noise can evolve. In fact, recent theoretical studies suggest that phenotypic noise could be a mechanism for a population of genotypes to respond to uncertain environments in a more efficient way than with conventional signal transduction pathways. However, it is not known if phenotypic noise is relevant for bacterially-driven processes in the environment, because the few studies that experimentally investigated phenotypic noise in bacteria did not consider metabolic activities that contribute to biogeochemical cycles. While it has been observed with novel nanoSIMS (nano-scale secondary ion mass spectrometry) technology that bacteria display phenotypic noise in metabolic activities, direct experimental evidence that phenotypic noise in metabolic activities has a biological function and can provide isogenic bacterial populations with a growth advantage is missing on a single-cell level. Moreover, it has not been experimentally tested if phenotypic noise in metabolic activities adapts over evolutionary timescales in response to fluctuating environmental conditions. The goal of this project is to experimentally investigate how phenotypic noise affects bacterial metabolic activity, growth and evolution under fluctuating environmental conditions. The proposal focuses on phenotypic noise in N2-fixation in the unicellular aquatic bacterium Klebsiella pneumoniae. The experiments will combine time-lapse microscopy, nanoSIMS and experimental evolution to understand why bacteria display phenotypic noise in metabolic activities. This will establish a link between the behaviour of single cells and biogeochemical cycles, and reveal how variation at the single-cell level can impact processes at the ecosystem level.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences ecology ecosystems
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2010-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
8092 Zurich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.