Objective
Global energy uncertainty and the limited recourses coupled with increased energy needs fuels the search for improving the efficiency of energy conversion technologies. Although the EU policies target increased use of renewable energy to 12% of gross energy production by 2010, this commitment has also highlighted the urgent need for improving the energy utilization of fossil-fuel based power-plants to allow continuation of the energy intensive lifestyle of EU countries.
Thermoelectric (TE) devices can play a very important role in efficient energy harvesting, and recovery. TE devices are ‘fuel-free’ solid-state devices with no moving parts and therefore are extremely reliable. TEs can harvest residual low-grade energy which otherwise is wasted. To date, their use is limited by low conversion efficiency. The key factor for improving the performance of TE applications is mainly through the development of TE materials as well as corresponding TE module/device technology and design, based on the material types, which can ensure better performance. Recent advances in nanotechnology offer unprecedented opportunities in designing and fabricating increasingly complex material architectures with controlled and hierarchical microstructures. Theoretical predictions showed that low-dimensional TE materials with figure of merits (a measure of the goodness of TE materials) can be spectacularly enhanced from currently ~1 to extremely high values of 5 -10 (up to 20). The present proposal is concerned with applying modern nanotechnology principles to the design and creation of novel material architectures with enhanced TE properties, with close feedback with theoretical studies. The material architectures considered in this proposal are chosen based on suitability for the development of next generation TE modules and devices, designed for a few specific promising applications including harvesting waste energy from automobiles and environmentally benign, efficient cooling systems
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology mechanical engineering thermodynamic engineering
- engineering and technology nanotechnology
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-NMP-2010-SMALL-4
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
100 44 STOCKHOLM
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.