Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Ultracold negative ions by laser cooling

Objective

Laser cooling is a well-established technique for the creation of ultracold particle ensembles in beams or traps. Over the past 30 years, it has become an indispensable tool in atomic physics and has opened many exciting new research fields. Both in positive atomic ions and in neutral atoms, the valence electron is bound in a Coulomb potential. The resulting infinite series of excited states provides a wide choice of suitable cooling transitions in many ionic and atomic systems. Surprisingly, laser cooling of negative atomic ions has never been achieved. The binding of the valence electron in these systems is based on electron electron correlation effects, which drop off quickly as the excess electron is removed from the neutral core. Consequently, anions are easily neutralized and only a few of them have excited levels. When excited states do occur, they are usually sub-levels of the ground state, meaning that transitions between the ground and excited state are weak and laser cooling would take prohibitively long. However, only a few years ago, a strong transition between the ground state and an opposite-parity excited state was found in the negative osmium ion. With this discovery, the laser cooling of atomic anions has finally come into reach. High-resolution optical spectroscopy on negative osmium has been carried out by the applicant, confirming the existence of a potential laser cooling transition. The aim of the proposed project is the first-ever demonstration of atomic-anion laser cooling. Ultimately, laser-cooled atomic anions could be used to cool any other negative-ion species by confining them simultaneously in a trap. The proposed technique is therefore applicable to a wide range of research fields in which ultracold negative ions are required.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 1 115 970,00
Address
HOFGARTENSTRASSE 8
80539 Munchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0