Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Probing the effect of Time Reversal Symmetry breaking by the application of a local magnetic field in topological insulators

Objective

Electronic states that could propagate long distances without power dissipation and with spin coherence (i.e. without losing information about their spin state) would be desirable for the design of energy efficient electronic devices and to make reality theoretical proposals of quantum computation devices. Topological insulators are recently discovered materials that may potentially offer these foreseeable properties. These materials are insulating in bulk, but present metallic edge states that are naturally preserved from backscattering by time reversal symmetry. In other words, the propagation direction and the spin state are correlated in these systems, so in order to be scattered, electrons must flip their spin (break time reversal symmetry). Experimental results already indicate the existence of such states but still a huge experimental effort is necessary to reach the necessary understanding and the technical skills to take advantage of the predicted surprising properties of these materials. Specially promising are the expected consequences of the application of a local magnetic field to these topologically protected states. Between other consequences, this would allow the confinement and manipulation of these states and would be therefore a first step towards the fabrication of theoretically proposed devices based in the special properties of these materials. We propose here a comprehensive study of the effect of magnetic field in different topological systems (HgTe quantum wells and the so called 3D topological insulators) by means of state of the art nanofabrication and characterization techniques, including an innovative combination of scanning probe microscopies and electronic transport measurements. Our aim is to provide a complete (local and non-local) picture of the electronic transport and electronic structure characteristics of these materials as well as to provide means to manipulate and confine their exotic topological states.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN NANOCIENCIAS CIC NANOGUNE
EU contribution
€ 222 920,00
Address
TOLOSA HIRIBIDEA 76
20018 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0