Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

First-principles engineering of thermal and electrical transport at the nanoscale

Objective

There is great hope to tackle serious global issues related to energy consumption and waste by developing technologies based on efficient nanoscale materials and devices. For this to happen, we need breakthroughs in our ability to control electrical and thermal transport at the nanoscale. Ab-initio materials modelling will play a central role in this, providing microscopic understanding and the materials parameters needed to bridge the macroscopic performance and the microscopic mechanisms that determine transport properties. In this project I will use ab initio techniques based on density-functional theory to calculate the electronic and vibrational properties of materials as well as the carriers' relaxation times due to carrier-carrier and carrier-defect interactions. These are the key ingredients that will then be used in the Boltzmann transport equation to simulate transport in devices, taking into full account the coupled electron-phonon dynamics in complex geometries, and in the presence of interfaces or defects. The research will proceed in three main directions. First, toward engineering materials and devices for high-performance nanoelectronic applications. Here I will study the detailed mechanisms of carrier-induced heating in silicon- and carbon-based electronic devices: this is a key technological issue that is becoming dominant as we race toward the nanoscale. Second, toward identifying new optimal thermoelectric materials, which are of great relevance to energy conversion or cooling applications. To this end, I will perform a systematic study of the thermoelectric properties of promising materials, starting from ternary and filled CoSb3-based skutterudites. Third, toward characterizing structural and spectroscopic properties of materials and devices. Here I will place particular effort in building a database of thermo-mechanical and spectroscopic properties of the materials that show the most promising transport characteristics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

KING'S COLLEGE LONDON
EU contribution
€ 91 666,67
Address
STRAND
WC2R 2LS London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0