Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mechanistic studies of T-DNA integration into plant genome

Objective

Plant genetic transformation is a fascinating process by which the Agrobacterium transforms its host by delivering a well-defined fraction of its own genome (designated transfer DNA or T-DNA) as a single-stranded (ss) DNA molecule (designated T-strand) into the host cell. The T-DNA integrates into the host genome and is expressed there. Many of the biological mechanisms that govern the transformation process remain poorly understood and our understanding of the mechanisms by which T-DNA molecules integrate into the host-cell genome is still sketchy. The T-DNA molecule does not code for the machinery needed for its transport and integration into the plant genome. Thus, the T-DNA sequence can potentially be replaced by any other sequence of interest without affecting the transformation and integration process, which is likely to be governed largely by plant proteins and machineries. T-DNA molecules were shown to be capturable by genomic double-strand breaks (DSBs), which led to the suggestion that DSBs may act as ‘hot spots’ for T-DNA integration. Data from my laboratory suggest that a double-stranded (ds) intermediate (dsT-DNA) may serve as a dominant substrate in the integration process. The mechanism by which T-strands are complemented to dsT-DNAs is still unknown and to the best of our knowledge, have never been studied and we have only recently begun to reveal the molecular mechanisms by which dsT-DNA molecules integrate into genomic DSBs. My hypothesis is that dsT-DNA intermediate molecules and genomic DSBs play a significant role in T-DNA integration and in my interdisciplinary proposal I plan to combine the use of functional assays, biochemical studies, genetic approaches and imaging methods to (i) unveil the molecular mechanism of T-strand complementation to dsT-DNA and (ii) study the role played by DSBs in capturing dsT-DNA molecules.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

BEN-GURION UNIVERSITY OF THE NEGEV
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0