Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Components for Highly Advanced time-Resolved fluorescence MIcroscopy based on Nonlinear Glass fibres

Project description


Core and disruptive photonic technologies

The project CHARMING aims at developing compact and fully fibred visible lasers for fluorescencespectroscopy, high resolution confocal microscopy and tryptophan imaging. These applications requirepulsed operation (about 100 ps at repetition rates from 1 to 80 MHz), various wavelengths in the visible(from 515 to 630 nm typically) and in the UV (for tryptophan imaging), high average power (up to 500 mW for high resolution) with a polarisation maintaining fibre delivery when possible.These wavelengths cannot, in most of the cases, be addressed directly. Therefore, in order to respond tothese applications with fibre based solutions different technological building blocks have to be developed.The project CHARMING will focus on the development of semiconductor laser sources in the 1.1 μm to1.2 μm band, Bismuth and Raman amplifiers, pulse gating and wavelength conversion fibre basedsolutions. This last function is certainly the more challenging in the project.Periodically Poled Singlemode Fibres (PPSF) for Second Harmonic Generation (SHG) have beenproven at laboratory scale but breakthrough approaches are required for this technology to be integrated in future systems. Various innovative approaches, in particular the use of Micro-structured Optical Fibres (MOF), will be investigated to convert this promising technology into potential products.SHG and other functions developed in CHARMING will be integrated in gain-switched and modelockedlasers at different wavelengths in the visible. The compatibility of these sources with the requirements of the imaging applications targeted in the project will be demonstrated.Finally the performances of the devices will be pushed beyond these specifications (in the Watt level)for targeting a broader potential impact (like for instance, applications in micromachining).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

MULTITEL
EU contribution
€ 527 029,00
Address
RUE PIERRE ET MARIE CURIE 2
7000 Mons
Belgium

See on map

Region
Région wallonne Prov. Hainaut Arr. Mons
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0