Objective
Recent hardware developments from the medical device manufacturers have made possible non-invasive/in-vivo acquisition of anatomical and physiological measurements. One can cite numerous emerging modalities (e.g. PET, fMRI, DTI). The nature (3D/multi-phase/vectorial) and the volume of this data make impossible in practice their interpretation from humans. On the other hand, these modalities can be used for early screening, therapeutic strategies evaluation as well as evaluating bio-markers for drugs development. Despite enormous progress made on the field of biomedical image analysis still a huge gap exists between clinical research and clinical use. The aim of this proposal is three-fold. First we would like to introduce a novel biomedical image perception framework for clinical use towards disease screening and drug evaluation. Such a framework is expected to be modular (can be used in various clinical settings), computationally efficient (would not require specialized hardware), and can provide a quantitative and qualitative anatomo-pathological indices. Second, leverage progress made on the field of machine learning along with novel, efficient, compact representation of clinical bio-markers toward computer aided diagnosis. Last, using these emerging multi-dimensional signals, we would like to perform longitudinal modelling and understanding the effects of aging to a number of organs and diseases that do not present pre-disease indicators such as brain neurological diseases, muscular diseases, certain forms of cancer, etc.
Such a challenging and pioneering effort lies on the interface of medicine (clinical context), biomedical imaging (choice of signals/modalities), machine learning (manifold representations of heterogeneous multivariate variables), discrete optimization (computationally efficient inference of higher-order models), and bio-medical image inference (measurement extraction and multi-modal fusion of heterogeneous information sources).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- medical and health sciences clinical medicine oncology
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2010-StG_20091028
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
92290 CHATENAY MALABRY
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.