Objective
Photolitography, which produces geometrical structures through light-induced polymerisation of monomers with high accuracy, precision and spatial resolution, was a key innovation enabler in the drive for high-performance miniature electronics, which had an unprecedented impact on every aspect of our modern life. Geometrically well-defined microstructures could also be a game changer in the medical device industry, especially in the development of implantable devices with better tissue compatibility, as well as in the discovery of new drugs and treatments.
Current gold standard materials and biomaterial extrusion processing cannot generate the structural resolution to kick-start this new era. The groundbreaking approach of POLINA is to combine a radically new, light-sensitive poly(amino acid) material platform with established and emerging photolithographic patterning techniques to deliver a revolutionary technology that can be exploited for medical devices and next-generation green electronics. Exploring this uncharted territory will be possible through an ambitious multidisciplinary approach delivering breakthroughs in photopolymerisation of amino acids and their lithographic structuring for novel materials with unique biological properties.
The high innovation potential of this technology to overcome current limitations will be demonstrated in three selected examples related to lung diseases, i.e. micropatterned cell surface models, spheroid arrays for lung disease modelling and drug testing as well as tracheal implants. Our intersectoral team of 5 academic groups and 2 SMEs brings together unique scientific expertise in photo and polymer chemistry, biomaterials science, lithographic processing, tissue engineering, clinical expertise and innovation management. Through POLINA we will pave the way to revolutionise bioprinting, for safer, smarter and affordable medical devices and in the long term a new approach in (bio)electronics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural scienceschemical sciencespolymer sciences
- engineering and technologyindustrial biotechnologybiomaterials
- medical and health sciencesmedical biotechnologyimplants
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Call for proposal
(opens in new window) HORIZON-EIC-2023-PATHFINDEROPEN-01
See other projects for this callFunding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
2 Dublin
Ireland