Objective
Stroke is one of the most severe medical problems with far-reaching public health and socio-economic impact, gathering momentum in an ageing society. PRECISE4Q sets out to minimise the burden of stroke for the individual and for society. It will create multi-dimensional data-driven predictive simulation computer models enabling – for the first time – personalised stroke treatment, addressing patient’s needs in four stages: prevention, acute treatment, rehabilitation and reintegration.
Heterogeneous data from multidisciplinary sources will be integrated: genomics, microbiomics, biochemical; imaging including mechanistic biophysiological models of brain perfusion/function; social, lifestyle, gender; economic and worklife, requiring substantial efforts for information extraction, semantic labelling and standardisation.
Novel hybrid model architectures, structured prediction models, complex deep-learning and gradient boosting models will form the Digital Stroke Patient Platform including a Stroke Risk CDSS (Clinical Decision Support System), Treatment Outcomes CDSS, Rehab Programme, Socio-Economic Planning Tool and New QvidLab. The decision support will be tailored to the patient's current life stage thus enabling clinicians to optimise prevention and treatment strategies over time, and will include personalised coping strategies, support of well-being and reintegration into social life and work.
The predictive capability and clinical precision will be validated with real clinical data generated by (i) prospective clinical studies and (ii) retrospective analyses of big data sets: health registries, cohort studies, health insurance data, electronic health records.
PRECISE4Q will have a clinically measurable and sustainable impact leading to better understanding of risk, health and resilience factors. In contrast to current schematic therapy guidelines, it will support patients throughout their life-long journey by personalised strategies for their specific needs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health scienceshealth sciencespublic health
- medical and health sciencesclinical medicinephysiotherapy
- medical and health scienceshealth sciencespersonalized medicine
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- medical and health sciencesbasic medicineneurologystroke
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Call for proposal
(opens in new window) H2020-SC1-2016-2017
See other projects for this callSub call
H2020-SC1-2017-CNECT-2
Funding Scheme
RIA - Research and Innovation actionCoordinator
10117 Berlin
Germany