Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

DEEP OSCILLATORY NEURAL NETWORKS COMPUTING AND LEARNING THROUGH THE DYNAMICS OF RF NEURONS INTERCONNECTED BY RF SPINTRONIC SYNAPSES

Project description

An innovative artificial neural network could learn up to 10 million times faster than we do

Developing artificial neural networks that can learn, process and 'think' as the brain does is a sort of Holy Grail with virtually limitless applications. Deep learning paradigms exploiting multilayer hierarchical artificial neural networks mimicking the brain's structure can also mimic the brain's ability to learn by example. They have achieved tremendous success, even exceeding human performance in some cases. The EU-funded RadioSpin project plans to demonstrate deep learning networks processing radiofrequency (RF) signals and learning at speeds up to 10 million times faster than a human brain. Benchmarking applications will target mammography and IoT RF fingerprinting.

Objective

The goal of RadioSpin is to build a hardware neural network that computes using neural dynamics as in the brain, has a deep layered architecture as in the neocortex, but runs and learns faster, by seven orders of magnitude. For this purpose, we will use ultrafast radio-frequency (RF) oscillators to imitate the rich, reconfigurable dynamics of biological neurons. Within the RadioSpin project, we will develop a new breed of nanosynapses, based on spintronics technology, that directly process the RF signals sent by neurons and interconnects them layer-wise. We will demonstrate and benchmark our concept by building a lab-scale prototype that co-integrates for the first time CMOS RF neurons with spintronic RF synapses. We will develop brain-inspired algorithms harnessing oscillations, synchrony and edge-of-chaos for computing and show that they can run on RadioSpin deep network RF technology. Finally, we will benchmark RadioSpin technology for biomedical and RF fingerprinting applications where fast and low energy consumption classification of RF signals are key.
To achieve its ambitious goals RadioSpin brings together frontier researchers along the entire chain of neuromorphic engineering, from material science (spintronic nanodevices), physics (non-linear dynamics), electronics (RF CMOS design), computer science (artificial intelligence algorithms), and microwave signal processing. Two innovative companies bring real-life use-cases (microwave mammography and IoT RF fingerprinting). The scientific experts are further complemented by experts in the field of innovation, commercial deployment and IP monetisation, as well as communication and public engagement.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETPROACT-2018-2020

See all projects funded under this call

Coordinator

UNIVERSITE DE BORDEAUX
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 833 045,75
Address
PLACE PEY BERLAND 35
33000 Bordeaux
France

See on map

Region
Nouvelle-Aquitaine Aquitaine Gironde
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 898 526,58

Participants (6)

My booklet 0 0