Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Optimising hard carbon anodes for efficient energy storage in sodium-ion batteries

Project description

Optimising sodium storage in a low-cost lithium battery alternative

Sodium (Na)-ion batteries utilise low-cost and abundantly available Na rather than expensive lithium (Li). However, the amorphous and porous carbon anodes that store Li ions so well pose a challenge when it comes to storing Na ions. Since there are currently no detailed models of hard carbon accounting for its microstructural complexity, it is nearly impossible to optimise the carbon–Na interface. With the support of the Marie Skłodowska-Curie Actions programme, the OptiCarb project is developing realistic models of hard carbon anodes. These will enable a very close look at Na adsorption in the confined space of carbon pores that will help engineers optimise Na storage capacity, removing the barrier to commercialisation.

Objective

OptiCarb overall aim is to understand the fundamental mechanisms of sodium-ion intercalation/adsorption in hard carbon anodes and find the optimum carbon atomic configuration that maximises the sodium storage capacity. Experimentally it is difficult to unravel the mechanistic nature of sodium-carbon interactions, due to the complex atomic structure of hard carbons. Therefore, theoretical studies based on molecular simulations are crucial, as they can achieve atomistic resolution. However, up to date there is no realistic model capturing the microstructural complexity of hard carbons available in the literature, which hinders the subsequent study of the sodium-hard carbon interface. In this computational project I will use molecular dynamics simulations and an innovative methodology to generate realistic models of hard carbon anodes that capture porous and pseudo-graphitic domains into a single 3D-connected nanostructure. Our models will allow us to systematically study Na intercalation between pseudo-graphitic layers and Na adsorption in the confined space of carbon pores, which are key to optimise the Na storage capacity. To ensure maximum impact of the gained knowledge from our theoretical studies, I will closely work with experimentalists in my host group to validate and correlate our models with experimental data and guide the experimental design of optimised anodes with high Coulombic efficiency and high capacity. This will push the performance of Na-ion batteries to active long cycles (over 10000), high energy density (above 400 Wh/kg) and high Coulombic efficiency above 96%, making them competitive with commercial Li-ion batteries and paving the way for its large-scale commercialisation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0