Objective
In recent years, Artificial Intelligence has shifted towards collaborative learning paradigms, where multiple systems acquire and elaborate data in real-time and share their experience to improve their performance. MEMRINESS will generate new fundamental computing primitives that will overcome the current challenges for the deployment of intelligent systems on the edge.
The requirements of a system operating on the edge are very tight: power efficiency, low area occupation, fast response times, and online learning. Brain-inspired architectures such as Spiking Neural Networks (SNNs) use artificial neurons and synapses that perform low-latency computation and internal-state storage simultaneously with very low power consumption, but at present they mainly rely on standard technologies, which make SNNs unfit to meet the above-mentioned constraints. Indeed, the dream of compact and efficient neurons and synapses, able to work at different time scales to match real-time constants and to retain memory of their state even in the absence of a power supply, cannot be realised without flanking standard technologies with emerging ones.
In this respect, memristive technology has shown promising results, due to its ability to support non-volatile storage of the SNN parameters. Yet so far, research has prioritised the non-volatile properties of the devices rather than focusing additionally on the reproduction of multi-temporal synaptic and neural dynamics. To solve this problem, I will develop neurons and synapses that exploit the intrinsic physical characteristics and dynamics of volatile and non-volatile memristive devices to enable the design of compact, power efficient SNNs with multi timescale dynamics. I will use a holistic approach and co-develop every aspect, from the devices to the circuits, to the learning algorithms. I will use the results to design a SNN and demonstrate its collaborative and online learning capabilities in three scenarios of increasing complexity.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
01187 Dresden
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.