Project description
Enhanced control of magnetisation via magneto-acoustic spintronic devices
All elementary particles have an intrinsic spin associated with them. When it comes to electrons, the electron spinning around its axis is associated with a tiny magnetic dipole. Spintronics devices harness this quantum phenomenon for information storage and processing. Controlling the spin is conventionally accomplished with applied magnetic or electric fields but the techniques are facing barriers to more efficient control. The pioneering EU-funded MAWiCS project will use acoustics to overcome these obstacles, achieving highly efficient control of spin dynamics through magneto-acoustic manipulation of magnetisation in complex spin systems. Outcomes will not only enhance performance but open the door to novel functionalities via magneto-acoustic spintronic devices.
Objective
Spintronic devices perform information storage and processing based on the spin degree of freedom. Materials with complex magnetic order, such as ferrimagnets, antiferromagnets and chiral magnets are promising candidates for next-generation spintronic devices with ultrafast speed, enhanced robustness and unique functionalities. However, several fundamental obstacles prevent their efficient control with established approaches based on magnetic fields and electrical currents.
MAWiCS will overcome these obstacles by introducing the magneto-acoustic control of magnetization in these complex spin systems. The advantage of MAWiCS approach is based on the following hypotheses: Microwave frequency phonons can excite and control antiferromagnetic spin waves and magnetic skyrmions lattices with high efficiency. The uniaxial magnetic anisotropy induced by magneto-acoustic interactions can be used for full modulation of antiferromagnetic resonance frequencies. Magneto-acoustic waves can propagate in topologically protected skyrmion lattice edge-states with reduced magnetic damping.
MAWiCS will develop innovative experimental approaches to take advantage of symmetry, topology and exchange-enhancement effects for highly efficient control of spin dynamics in complex spin systems. Consequently, MAWiCS results will allow for the first time to:
1) Generate nanoscale spin waves from acoustic pulses in ferrimagnets and antiferromagnets.
2) Control skyrmions by acoustic lattices and realize nanoscale topological acoustics
3) Excite and detect antiferromagnetic spin waves by acoustic two-tone modulation
MAWiCS results will pave the way for the technological realization of magneto-acoustic spintronic devices, enable antiferromagnetic magnonics and realize topological magnon transport. Ultimately, MAWiCS will thus pioneer a new class of information technology concepts that do not only offer increased performance but also novel functionalities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences atomic physics
- natural sciences physical sciences acoustics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67663 Kaiserslautern
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.