Objective
Building a sustainable and climate neutral future for aviation is an inevitable requirement for a society with increasing mobility needs. If we are to stabilise the global temperature below the 1.5°C threshold set by the Paris Agreement, rapid action is to be taken. MINIMAL will contribute to a radical transformation in air transport by providing disruptive ultra-efficient and low-emission technologies that will, in combination with the aviation ecosystem, sustainably reduce the climate impact of aviation. The MINIMAL project will, through an unprecedented effort between European engine OEMs, world leading atmospheric physics scientists, and lead researchers in combustion and propulsion, attack the major sources of non-CO2 and CO2 emissions in aeroengines. This will be accomplished with the introduction of climate optimised new propulsion systems based on composite cycle engine technology, that provides unparalleled flexibility with respect to operations, and that has the potential to eliminate the large sources of effective radiative forcing by 2035: 80% reduction from contrails, 52% reduction from net-NOx, and 36% fuel burn reduction resulting in 36% to 100% CO2 reduction, depending on the fuel used.
Results will allow assessing the interdependencies between non-CO2 and CO2 effects already during the early stages of aero-thermal-mechanical design and converge into engine options that have minimum climate impact. The findings are supported by numerical (TRL 2) and experimental (TRL 3) proof of concept of Low-NOx opposed-piston constant volume combustion technology with pre-micromixing of hydrogen. In MINIMAL we understand the urgency and aim for maximum impact. Aggressive, but realistic roadmaps will be outlined together with regular exchanges in major industry research centres to develop these technologies into products and bring them to in 2035-2040.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences biological sciences ecology ecosystems
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.7 - Clean, Safe and Accessible Transport and Mobility
See all projects funded under this programme -
HORIZON.2.5.6 - Industrial Competitiveness in Transport
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D5-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.