Objective
The rapid progress in intermittent solar, wind technologies has created an urgent need to develop parallel technologies of storing energy in forms that are suitable for on-site applications as well as long distance transmission. The present method of storing the surplus energy in batteries is not a viable solution in the long run, owing to the limited reserves and toxicity of battery materials. In such a scenario, storing the obtained energy in the form of H2 fuel is a fairly attractive strategy.
Alkaline water electrolyzer (AWE) have been a key technology for large-scale hydrogen production and are capable of generating energy in MW range. Alkaline water electrolyzer (AWE) still requires technological make-over to reach the desired efficiency of about 90 % from the current 70 %. On the other hand, counterpart technology of proton exchange membrane (PEM) water electrolyzer is highly efficient, but its investment cost and low lifetime limits commercialization. The investment cost of AWE today is around 1000-1200 $/kW, and PEM is 1700-2500 $/kW. In addition, the lifetime of AWE is higher and the annual maintenance costs are lower compared to PEM. Although AWE has an economic advantage over PEM, integrating AWE with an intermittent energy source of solar and wind power requires a major advancement in the design to be used in dynamic operating conditions.
The key objective of this research is to develop a multipurpose low-cost water electrolyzer for H2 production by electrolysis of alkaline-water with special focus on seawater (alkaline) water to store intermittent energy sources (solar and wind) in form of clean fuel. Unfortunately, there are no commercial electrolyzer that run on seawater, owing to the associated research and technical challenges of high activity, OER selectivity, stability, and low cost. The present project aims to develop AWE stacks for H2 production employing efficient, cost-effective two-dimensional transition metal compounds (2D-TMC).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences catalysis electrocatalysis
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
166 28 Praha
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.