Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Innovative approach by developing oxygen blocking membrane electrolytes for novel solid state sodium-air batteries

Project description

Novel solid-state electrolytes for sodium-air batteries

Sodium-air batteries are emerging as a viable alternative to lithium-ion technology. Sodium is more abundant than lithium and thus cheaper, while the lighter weight, porous air cathodes can attain greater energy densities. However, conventional electrolytes used in such batteries are unstable, which eventually leads to battery failure. Furthermore, as the electrolytes are liquid, they can leak from the inside of the battery and come into contact with air or water. Funded by the Marie Skłodowska-Curie Actions programme, the OXBLOLYTE project will overcome these issues by developing novel solid-state electrolytes. The proposed electrolytes will be based on a unique class of microporous materials – polymers of intrinsic microporosity – and conducting organic ionic plastic crystals.

Objective

The EUs notion to become climate neutral in 2050, as per the EU Green Deal, strives to transform the economy through advancements in clean renewable energy. While rechargeable Li-ion batteries sustain the current market for energy storage, they cannot continue to achieve the transformative scale of improvement required due to the finite supply of lithium, and their limited energy storage capacities, among others. Sodium-air batteries (NaBs) provide an attractive alternative due to the abundance of sodium thus low cost and their lightweight porous air cathodes to reach greater energy densities. Todays traditional electrolytes are unstable towards Na metal and radical species generated during cycling, allowing oxygen crossover to the anode, which results in battery failure. Moreover, their liquid nature leads to evaporation and leakage issues. OXBLOLYTE Postdoctoral Fellowship will overcome these challenges by developing novel solid-state electrolytes based on Polymer of Intrinsic Microporosity membranes combined with conducting Organic Ionic Plastic Crystal materials. In parallel to these practical concerns, OXBLOLYTE will unravel mechanistic understanding of solid-state NaBs a field currently unexplored - to allow the correct choice of electrolyte.

The research fellow, Dr. Yahia (with expertise in polymer membranes), will conduct the OXBLOLYTE project at CIC energiGUNE (Spain) with the host supervisor, Dr. Ortiz-Vitoriano (pioneer in the relevant research field) which includes mechanical property studies under the supervisor of Dr. Sardon (with expertise in polymers) at Polymat (Spain). OXBLOLYTE facilitates the transfer of 3 Is knowledge whilst diversifying Dr. Yahias networks and leadership skills to further advance his career perspectives and employability. As a result, OXBLOBLYTE will lead to research outputs that will be disseminated to the general public, scientific community and industry with the final aim to enlarge its exploitation potential.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

CENTRO DE INVESTIGACION COOPERATIVA DE ENERGIAS ALTERNATIVAS FUNDACION, CIC ENERGIGUNE FUNDAZIOA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 181 152,96
Address
CALLE ALBERT EINSTEIN 48 PARQUE TECNOLOGICO DE ALAVA
01510 MINANO ALAVA
Spain

See on map

Region
Noreste País Vasco Araba/Álava
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0