Project description
Insight into cellular heterogeneity of agricultural fungi
Rice disease caused by the agricultural fungus Magnaporthe oryzae is responsible for the loss of up to 30% of the global yield of rice. The fungal pathogen generates spores which have different transcriptional profiles. Funded by the European Research Council, the CELL-ENEITY project aims to dissect the mechanisms responsible for the observed cellular heterogeneity of this devastating pathogen. The working hypothesis is that cell cycle regulates the transcription of infection-related genes and determines the developmental pathway of the fungus. Results will provide important insight into the infection process of Madgnaporthe oryzae and contribute to the identification of new targets for treatment.
Objective
Clonal microorganisms display cellular heterogeneity at the transcriptional level, to survive under unfavourable conditions or differentiate into specialised structures. This is the basis of antibiotic and fungicide resistance, but very little is known about how cellular heterogeneity originates and operates in the infection biology of agricultural fungi.
Magnaporthe oryzae is one of the most devastating fungal pathogens in the world that destroys enough rice to feed 60M people every year. It produces ~50,000 new spores a day from a single lesion in the fields, but it remains unknown whether they are transcriptionally different. Spores contain three cells that display cellular heterogeneity between them during appressorium development, a specialised cell necessary for infection. Two of the cells undergo autophagy rapidly and the third undergoes a mitotic division leading to the formation of the appressorium. The mechanism by which cellular heterogeneity operates in spores has never been elucidated.
This proposal will identify, for the first time, the molecular mechanisms driving cellular heterogeneity and genes subjected to it. An unparalleled resolution of the infection-associated developmental program of individual spore cells will be obtained by scRNA-seq, which will identify a cohort of virulence factors critical for infection. I propose that the underlying mechanism of cellular heterogeneity is the cell cycle, through the activity of Cyclin Dependent Kinases (CDKs) and a novel group called non-PSTARE CDKs, reported to be regulators of transcription in other organisms. By a state-of-the-art chemical genetic approach combined with phosphoproteomics, their role and signalling pathways will be determined. Overall, with this proposal, novel components associated to the infection process of one of the most threatening fungal pathogens in the world will be determined, opening avenues that up to date have not been explored and whose potential is inestimable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
31006 Pamplona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.