Project description
Disruptive electrical propulsion power processing unit for gridded ion thrusters
Demand for electric propulsion is growing for space applications, and the proposed technological solutions are evolving fast. Gridded ion technology allows more efficient management of the Xenon propellant, providing a more sustainable alternative to Hall effect thruster technology. The current market and platform accommodation studies show that compactness and cost reduction of existing gridded ion thruster solutions are mandatory to provide a credible alternative in size and cost to Hall-effect thruster technology. To maintain Europe’s position and autonomy in gridded ion technology, and to increase market share, the EU-funded DEEP-PPU project proposes the development of a disruptive electrical propulsion power processing unit for gridded ion thrusters to be used in geostationary and medium Earth orbit as well as deep space missions.
Objective
The objective of DEEP-PPU project is to develop and introduce to the market a disruptive Power Processing Unit (PPU) for Electrical Propulsion Gridded Ion Thrusters. This solution will stand out with its outstanding 40% mass and 35% volume reduction compared to the existing solutions on the market, while reducing the cost of the unit by a factor of two. The DEEP PPU project will strengthen the EU's space sector competitiveness in the international market, while securing the autonomy of supply for critical technologies and equipment.
The target PPU will be achieved through the use ground-breaking technologies in space, namely Gallium Nitride semiconductors and Commercial Off-The-Shelf components, together with the implementation of custom design of power magnetics, the integration of the Radio Frequency Generation module and the synergies with previous developments in the frame of GIESEPP (Gridded Ion Engine Standardised Electric Propulsion Platforms). A multidisciplinary team of entities across Europe has been set, providing the right background and expertise to perform the required activities.
The proposed PPU product fits the HORIZON-CL4-2022-SPACE-01-12 topic (Technologies and generic building blocks for Electrical Propulsion), specifically addressing the second area of this topic “R&I on electrical power architecture and related components (Power Processing Unit, direct drive, etc.)”.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
- natural sciences physical sciences astronomy space exploration
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.10 - Space, including Earth Observation
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-IA - HORIZON Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-SPACE-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28760 Tres Cantos
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.