Objective
In most European countries, the diagnosis of cancer is achieved by examination of haematoxylin-eosin (HE) staining by an experienced pathologist. Nevertheless, several other diagnostic approaches exist (e.g. immunohistochemical staining) which are not applied routinely for all cases due to their technical complexity, duration, and cost. Therefore, an important unmet medical need for fast, non-invasive, and label-free immunohistochemical staining based on molecular imaging without laborious sample treatment exists. This demanding challenge will be tackled in STAIN-IT using a non-invasive label-free measurement technique called multimodal imaging (e.g. the combination of coherent anti-Stokes Raman scattering, second harmonic generation, and two-photon-excited fluorescence). The multimodal images will be analysed using deep learning approaches, such as convolution neural networks (CNNs). These CNNs are utilized to mimic immunohistochemical stainings. CNNs are neural networks that learn the feature representation of the data, which is optimally suited to model a specific immunohistochemical staining. In STAIN-IT, the staining models will be developed along with the methods to quantitatively understand the nonlinear behaviour of the CNNs. With the envisioned approximation approaches for CNNs, these models no longer act as black box systems, and a quantification of tissue changes associated with the staining models can be achieved. For the very first time, STAIN-IT will develop a label-free, non-invasive, labour-inexpensive, and fast computational immunohistochemical staining, which can be easily implemented into clinical routine yielding increased diagnostic reliability and a better understanding of disease pathogenesis. A fast test of the antigen KI-67 in an intraoperative frozen section consultation situation or the use of Collagen IV as a quality control marker of tissue-engineered medicines are some of the exciting application possibilities of such staining model.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
07745 Jena
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.