Project description
Pioneering scalable quantum-to-classical conversion with quantum-enhanced shadows
In large-scale quantum experiments, a critical bottleneck arises at the interface between quantum and classical systems, where transferring information efficiently and at scale is a significant obstacle. To overcome this, the ERC-funded project q-shadows will develop 'shadows', innovative quantum-to-classical converters. Using randomisation and quantum-enhanced readouts, these shadows efficiently translate quantum data into classical formats, enhancing system feature prediction and scalability. Compatible with current quantum hardware, shadows leverage unique quantum effects for scalability while integrating proprietary protocols for classical data-driven learning from quantum data. Finally, the project will develop tools ensuring reliable quantum hardware execution, marrying theory with application. Led by an interdisciplinary expert, q-shadows lays the groundwork for advanced, scalable quantum data processing and learning, future proofing quantum technology development.
Objective
Large-scale quantum experiments do not work in isolation. Substantial classical computing power is required to control the experiment and process the results. This necessarily creates information-transmission bottlenecks at the interface between quantum and classical realms. These bottlenecks create scalability issues that prevent us from using existing architectures to the best of their capabilities and may even impair our ability to further scale up system sizes.
In this project, we adopt a unifying framework that takes into account all computing resources (quantum and classical). We develop quantum-to-classical converters to overcome information-transmission bottlenecks. Dubbed shadows, they leverage randomization, as well as quantum-enhanced readout strategies to obtain a succinct classical description of an underlying quantum system that can then be used to efficiently predict many features at once. The shadow paradigm is compatible with near-term quantum hardware and utilizes genuine quantum effects that do not have a classical counterpart. Building on these ideas, we also establish rigorous synergies between quantum experiments and classical machine learning. Shadow learning protocols use shadows to succinctly represent training data obtained from actual quantum experiments. A classical training stage then enables data-driven learning of genuine quantum phenomena. Finally, we develop new tools to ensure reliable execution on current quantum hardware, thus bridging the gap between theory and experiment.
My interdisciplinary skill set combines methods from modern computer science with quantum information and has already led to numerous high-impact contributions (e.g. 1 Nature Physics with more than 350 citations and 2 Science publications). These insights form the basis for this larger project, where we lay the foundation for scalable and practical quantum data processing and learning that can keep up and grow with future improvements in quantum technology.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4040 Linz
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.