Project description
Searching for stable long-term energy storage solutions through CAES
With intermittent renewable energy production on the rise, the need for stable long-term energy storage solutions has become imperative. Current options, predominantly Pumped-Storage Hydroelectricity (PSH), fall short in stabilising fluctuating renewable energy outputs. Compressed Air Energy Storage (CAES) offers potential, but faces challenges including poor efficiency and reliance on fossil fuels. In this context, the EU-funded Air4NRG project aims to improve long-term energy storage. Specifically, it targets over 70 % round-trip efficiency, sustainability, and integration with the grid. Its innovative CAES prototype promises robustness and safety, while prioritising circular economy principles. The project aims for a plug-and-play solution, fitting into a standard container with over ten hours of storage duration, without rare materials.
Objective
Recognising that current storage solutions are unable to stabilize enough the intermittent renewable energy production, new long term energy storage solutions are becoming mandatory.
Current long-term energy storage is mainly provided by Pumped-Storage Hydroelectricity (PSH). Compressed Air Energy Storage (CAES) has appeared for decades as a credible alternative but its poor energy efficiency, the need of fossil fuels and the use of existing underground cavities as storage reservoirs have limited its development. Variations to CAES have shown low efficiency, losing a big percentage of energy as heat and mechanical losses. Since the 2010s, there is a strong revival of scientific and industrial interest on CAES, led by China and the European Union (EU). For the EU, leading the new generation of high-efficient, low climate-impact and long-term energy storage research, is key to increase its energy independency.
In this context, the main objective of Air4NRG is the development of an innovative, efficient (over 70% RTE), long- term, and sustainable CAES prototype, which can enhance renewable energy availability and offers robustness and safety while increasing cost effectiveness and improving the environmental footprint. At the same time, it will promote innovation and competitiveness in the European energy storage industry, while prioritizing the principles of circular economy and environmental sustainability. Another key factor of the solution is the integrability to the electrical grid system and their intelligent EMS, which will be proven by the end of the project through end user integration activities (TRL5). The project will result in two prototypes: one of them will be a plug and play system fitting into a standard 40ft container with an over ten- hours storage duration, while the other will be a larger-scale system of 200kW with the same duration of storage. The developed system is a rare material-free solution with simple industrial infrastructure needs, allowing its full development within the EU, strengthening Europe’s position in the energy storage system sector.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy hydroelectricity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.3 - Energy Systems and Grids
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2023-D3-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1040 Bruxelles / Brussel
Belgium
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.