Project description
6G technology for precise sensors and localisation
The emergence of 6G communication technology has heightened the demand for novel technologies that can facilitate its introduction, adoption, and proliferation. The EU-funded 6G-MUSICAL project aims to revolutionise 6G by integrating radio sensing and communication technologies to develop innovative paradigms for RF communication. The project intends to equip 6G edge infrastructure nodes with radar-based radio-sensing components, enabling capabilities such as localisation, object tracking, and 3D imaging with unparalleled precision and resolution. Moreover, it will facilitate both connected and non-connected sensing, while optimising edge node synchronisation through collaboration between optical and electronic technologies. Ultimately, the project aims to develop the necessary components for integration onto 6G nodes.
Objective
6G-MUSICAL is a ground-breaking project that merges radio sensing and communication technologies to create new paradigms in RF communication. It aims to equip edge infrastructure nodes of 6G with integrated RF/radar-based radio-sensing elements that co-work with communication components. This enables localization, object tracking and 3D imaging, with cm-level precision and resolution. As such, the project will investigate new spectrally and energy efficient system architectures and signals, to facilitate high-rate communication across multi-frequency bands integrated with accurate sensing and localization.
Compared to other joint communication and sensing research, 6G-MUSICAL stands out in two ways. First, it considers sensing for both connected and non-connected objects, which is important given the trend towards connecting everything. Second, it addresses the synchronization of edge nodes, which is critical to achieving extreme levels of accuracy and resolution. The project will combine optical and electronic technologies to generate precise and stable references, enabling a network of smart cooperative multi-static radars, within future 6G, bringing new services, high accuracy localization and high-resolution 3D object reconstruction.
In the wireless domain, the project will define new waveforms suitable for radio-sensing and communications, exploit compressive sensing techniques and define cooperative multimode sensing and localization algorithms. In the network domain, focus will be on procedures for synchronization/calibration among edge nodes and on compression techniques to enable low overhead transport to a data fusion center of the collected information. The optical/electrical technology will develop and distribute the reference signals and will create novel antennas to address 6G requirements. Machine learning will be used to jointly optimize the system and services.
Key technologies will be demonstrated in labs to meet a stringent set of predefined KPIs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radar
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JU-SNS-2023
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3810-193 GLORIA E VERA CRUZ
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.