Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Development of CIRCular optimised material solutions for WIND turbine blades and support structures

Project description

Revamping wind turbines for a sustainable future

As wind turbines age, they face more frequent breakdowns and maintenance issues, increasing costs and environmental impacts. Many existing turbines are reaching the end of their useful life, creating a need for better, more sustainable solutions. The challenge is to improve their reliability and reduce waste. In this context, the EU-funded CIRCWIND project tackles these issues by developing new technologies for wind turbines. It focuses on creating more durable blade materials and circular, low-carbon concrete for offshore structures. CIRCWIND also advances simulation tools to predict and manage turbine performance. By testing these innovations in real conditions, the project aims to make wind energy more sustainable and cost-efficient.

Objective

CIRCWIND will develop and validate innovative technologies for current and future wind turbines (WT), to enhance reliability and lifetime, performance, operability and maintainability, as well as to find cost-efficient pathways towards complete circularity in a context where a growing number of WT are reaching their EoL. CIRCWIND’s most relevant results are:
- A prototype Fibre-Reinforced Polymer (FRP) material for blades with improved damage-tolerance and fatigue life, using a new multiscale modelling tool and simulation framework.
- A circular low Carbon concrete material for offshore floating WT based on a new geopolymer binder and circular lightweight aggregates (CLWA).
- New virtual replica-based constitutive models and simulation tools for the FRP material and geopolymer concrete, coupled with monitoring technologies allowing to simulate and predict failure and lifetime, and enabling future digital twinning for blade and substructure components.
- Integrated sustainability analysis addressing social, economic and environmental aspects, as well as improved circularity.
CIRCWIND will develop its technologies to TRL5, building prototypes and validating them in relevant environmental conditions. Representative components of TLP floater and blade have been chosen, made of geopolymer concrete and FRP materials respectively.
These innovations will allow future WT to include circular and cost-efficient materials installed in critical WT components at operating windfarms, ensuring feasibility, sustainability, acceptability and high replicability. Besides, new simulation tools, virtual replicas, DT to improve O&M costs.
CIRCWIND consortium has a good balance of academic and industrial partners, which allows the project’s developments to be well-oriented towards real market needs that in addition to the strong dissemination and exploitation plan proposed will maximise future impacts, clustering with relevant Offshore Wind stakeholders.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL5-2023-D3-02

See all projects funded under this call

Coordinator

SINTEF AS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 027 250,00
Address
STRINDVEGEN 4
7034 Trondheim
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 027 250,00

Participants (8)

My booklet 0 0