Project description
Ocean mixing and climate models
Turbulent mixing plays a crucial role in ocean ventilation, regulating how the ocean absorbs water, heat, and chemicals from the surface. This process influences the ocean’s ability to store heat and greenhouse gases, impacting Earth’s climate and mitigating climate change. Yet, the mechanics of mixing remain unclear due to limited observations and challenges in modelling small-scale turbulence. In this context, the ERC-funded REMIX-TUNE project aims to answer critical questions about the relationship between mixing and ocean ventilation by deploying a fleet of autonomous floats with microstructure sensors. This approach will provide the first comprehensive global database on ocean mixing, reshaping how future ocean-climate models assess turbulence and improving our understanding of its impact on climate.
Objective
Turbulent mixing controls the pace of ocean ventilation, the rate at which the ocean interior is filled up with water, heat and chemicals from the ocean’s surface. This process governs the ocean's ability to store atmospheric heat and greenhouse gases, exerting a profound impact on Earth's climate and moderating the rate of human-induced climate change. However, the role of mixing in ocean ventilation remains poorly understood, due to the scarcity of direct observations and the inability of numerical models to capture small-scale turbulent dynamics. Our limited understanding can be rationalised around three major questions: 1) How does the interplay between advective and diffusive processes control ocean ventilation? 2) What is the role of mixing in the water-mass transformations sustaining the ocean’s overturning circulation? 3) What is the relative importance of the two primary regimes of ocean turbulence (the mesoscale and microscale) for the ventilation of climate-critical tracers?
REMIX-TUNE addresses these questions through an innovative approach founded on two pillars: 1) Deploying the first large fleet of autonomous profiling floats equipped with microstructure turbulence sensors in key ocean ventilation regions; and 2) pioneering a novel theoretical approach to quantify mesoscale and microscale mixing using float microstructure observations and existing hydrographic data from the Argo programme. With this strategy, REMIX-TUNE will generate the first comprehensive, observation-based global database quantifying the role of mixing in ocean ventilation. This understanding will then be used to develop a new framework to assess and ground-truth the representation of mixing in the next generation of ocean-climate models. Thus, REMIX-TUNE will elicit a step change in our rationalisation of ocean mixing, and its integration into numerical models, and will leave a lasting impact on mixing research by revolutionising the methodologies employed in the field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SO17 1BJ SOUTHAMPTON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.