Project description
Hybrid pyramid approach for optimised certification in aerostructures
The aerospace industry faces challenges due to a complex and costly certification process. This process follows a pyramidal framework (from material to aerostructure) but offers limited insight into how changes at one level affect overall performance. Additionally, modifications at higher or lower levels often require repeating portions of the certification process. In this context, the EU-funded pAIramid project will use high-fidelity virtual tests interconnected across certification levels. The project will develop a digital tool that combines data-driven simulations with AI to optimise the certification process, reduce computational time, and improve decision-making. This hybrid pyramid approach enables faster design iterations. Several industrial demonstrators will evaluate the tool’s effectiveness in the field of aerostructures.
Objective
The aerospace industry faces significant challenges in bringing new aircraft designs to market, as this concerns a complex certification process that relies heavily on expensive and time-consuming physical tests based on a pyramidal framework (from base to top: material, coupon, element, aerostructure). This approach has notable drawbacks, including a lack of insight into how changes at one level impact the overall aerostructure performance and the need to repeat much of the certification process if changes are made at distant levels.
To address these challenges, the pAIramid project proposes a revolutionary approach based on high-fidelity virtual tests interconnected across the different levels of the certification pyramid. A digital tool is being created, which works by leveraging data-driven simulation methods and Artificial Intelligence (AI), aiming to optimize the certification process, reducing computational time, and promoting fast decision-making. This AI-driven hybrid pyramid approach breaks down barriers between different testing levels, easing knowledge transfer and faster design iterations.
The pAIramid project is completed with several industrial demonstrators, which will help to check the proper performance of the digital tool while proving that it is able to effectively bring in new solutions to the aerostructures’ field. Four different use cases, all of them focused on advancing technologies related to composites’ properties (functionalized thermosets and thermoplastics) and manufacturing processes (one-shot LRI and FDM with continuous fiber reinforcement) are analyzed. All of them will be matured up to TRL4, counting with relevant collaboration of RTOs and industrial partners, which give these technologies the potential to be deployed in the market in the coming years, as well as representing valuable information for the tool learning, which will continue growing thanks to already existing and newly created data, while spreading in the market.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences computer and information sciences artificial intelligence
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
- natural sciences computer and information sciences software software applications simulation software
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.7 - Clean, Safe and Accessible Transport and Mobility
See all projects funded under this programme -
HORIZON.2.5.6 - Industrial Competitiveness in Transport
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2024-D5-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20500 MONDRAGON
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.