Objective
Gas turbines play several important roles in Europe, contributing to various sectors of the economy. According to the Polaris Market report, the global gas turbine market was valued at 22.25 billion USD in 2021 and is expected to grow at a CAGR of 6.3% till 2030. At this huge global market size, since fossil fuels are burned in gas turbines, they release greenhouse gases, including CO2. Based on the 2030 EU Climate Target Plan, sets Europe on a responsible path to becoming climate neutral by 2050, greenhouse gas emissions should be cut by at least 55% by 2030. Hydrogen gas turbines offer several advantages over fossil fuels, making them an attractive option for clean and sustainable energy generation (zero emissions), helping to face climate change, and reducing air pollution. However, hydrogen burns at a higher temperature compared to other fuels, which poses challenges for turbine blade cooling and requires an efficient cooling technique to maintain blade integrity. Film cooling, by injecting cold air at discrete locations over the exposed surfaces through holes and slots, is one of the available technologies. Additive structures, such as ramps, near the exit of the cooling hole geometry can be used to improve the film-cooling effectiveness, thus increasing the gas turbine efficiency. The geometrical configuration of the upstream ramp can significantly affect the cooling effectiveness on the surface and the mixing between coolant and mainstream. Therefore, the ramp configuration should be carefully designed. In this project, this goal will be achieved through a multidisciplinary optimization approach, based on the combination of experiments and high-fidelity Large Eddy Simulations, making use of Artificial Intelligence and Machine Learning approaches. The outcome of the project will be an optimization tool and an optimized ramp to be applied on the cooling hole and expected to result in better thermal efficiency in the gas turbines and lower fuel consumption.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics geometry
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
24129 Bergamo
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.