Objective
A breakthrough of Proton Exchange Membrane Fuel Cells (PEMFC) requires a radical performances improvement of the key fuel cell material components (catalysts and protonic membrane) as well as highly innovative solutions to overcome the membrane assembly and integration limitations. Actual PEM fuel cells presents Membrane Electrode Assembly (MEA) architecture corresponding to a proton conductive membrane hot pressed between two catalytic electrodes. However, the MEA performance is limited by the interface effect between catalytic layer and membrane. To overcome this problem, the SMAllInOne project introduces a “SMart All in One” membrane concept. In this approach, a catalytic network is directly implanted in the thin film protonic membrane. This novel composite material is particularly well adapted for fuel cell technologies as there is no boundary between the membrane and the electrodes. Moreover, several functionalities will be added to this material in order to confer it smart properties such as water and crossover management, tailored porosity and 3D conformability. The scientific and technological objectives of the project are: • To synthesize bifunctional polymerizable and volatile precursors (alkenyl & sulfonyl) to prevent the destruction of the acidic functions during the thin film membrane realization • To create a network of percolated platinum nano-particles inside both faces of the membrane to ensure simultaneously a good catalytic efficiency and electronic conductivity • To enhance electronic conductivity by a tailored doping of material with gold particles by the surface • To study and propose a water and crossover management solution by adding functional hydrophilic particles to keep the membrane wet and Pt particles to getter hydrogen linkage • To avoid the fuel depletion by controlling the porosity using a porogen approach The consortium consists of 7 partners from 5 European countries including 2 SMEs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering composites
- engineering and technology materials engineering coating and films
- engineering and technology environmental engineering energy and fuels fuel cells
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ENERGY-NMP-2008-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.