Objective
The development of microchemical systems is one of the most exciting recently developed research topics with numerous potential industrial applications. One of the greatest challenges to encourage these systems to be adopted by industry is successful high level integration with sensors for understanding, optimisation and control of microsystems for various processes. The proposed research will develop such systems and their integration via linking them with chemical imaging. The benefits of chemical engineering at smaller lengthscales are manifold; the design of microchemical processes is important where, by nature, it is essential to have microdevices, e.g. in cell biology manipulation and transformations. Other processes can be designed macroscopically, but a move to microprocesses gives process advantages, such as enhanced heat and mass transfer, novel flow regimes, bringing material and process time and lengthscales into the same region to allow material property and process interactions, which would be impossible in macro-reactors. In order to achieve this, it is essential to have the capability of rapid 3D chemical imaging on a nano/microscale, as only by devising these new techniques to image microchemical systems, it will be possible to optimise them for novel engineering. The proposal is aimed at providing chemical imaging capability to miniaturised devices for the engineering of new materials and processes. It is proposed (i) to use chemical imaging and micro-deposition methods for the generation of materials with responsive gradient structures; (ii) to engineer nanostructured materials aided by high-resolution chemical imaging; (iii) to combine microfluidics with chemical imaging as a prototype of miniaturised chemical factories. The overall aim is to utilise the advantages of spectroscopic chemical imaging to develop novel miniaturised devices and materials that will serve as suitable platforms for future industrial users with wide applicability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences cell biology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology chemical engineering
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2008-AdG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.