Objective
Solid oxide fuel cells (SOFC) offer high electrical efficiency of power generation, multifuel operation and internal reforming capabilities among other benefits. However, flow maldistribution of gas reactants among cells of the fuel cell stack and uneven utilization of the active cell area is one of the reasons for the performance loss in the scale-up process or even a stack failure at high electric load, high fuel utilization conditions. Efficient and uniform supply of reactants and removal of products was previously studied using computational fluid dynamics (CFD) methods. These methods, although accurate, require significant computing power, computing time and offer limited optimization capabilities. The flow networks modeling approach offers accuracy sufficient for the engineering design together with the accelerated optimization capabilities. It shows accuracy sufficient for engineering design optimization. In the proposed model, design oriented mass and flow distribution model of the SOFC stack, stack manifolds and flow channels are simulated as a network of differential hydraulic resistances. In order to simulate hydraulic network operation under electric load conditions, differential model of the SOFC cell (DCM) will be implemented and combined with the hydraulic networks model. In the DCM model, principal geometrical parameters of the cell will be implemented (electrolyte/electrode thickness, electrode porosity) together electrochemical performance characteristics, including polarization characteristics. The modeling results will explain physical mechanisms of flow distribution in the SOFC stack. They will also allow optimization of combined manifold and flow channels geometry under both no-load and electric load operation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- natural sciences mathematics pure mathematics geometry
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-ERG-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
01-330 WARSZAWA
Poland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.