Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Towards Electronic Product Coding with RFID tags based on hybrid organic-oxide complementary thin-film technology

Project description


Flexible, organic and large area electronics

ORICLA will be the world’s benchmark for RFID performance with Organic and Large Area Electronics, OLAE. RFID is an important technology e.g. in logistics, to transmit an identification code by radio waves (at high frequency (HF) or ultra-high frequency (UHF) between a transponder and a reader. The Electronic Product Code (EPC) protocol has been developed for use in high volume RFID logistic applications. EPC tags are widely used today on pallet level, and will later be used for packages and ultimately on item level. Such tags could also capture and transmit information on the environment (e.g. temperature) of the object of which they carry the identification. Thus, they will enable the vision of creating smart objects. OLAE technologies have key assets to capture large markets in this business: they allow to strongly reduce cost compared to Si chips, and simultaneously offer true mechanical flexibility, required for integration of tags onto items. Today OLAE RFID tags are limited in performance. The ORICLA partners will realize new OLAE chip technologies, based on complementary logic with organic and oxide semiconductors and on self-aligned imprint lithography as upscaleable patterning technology that can provide suitable dimensions. This unique combination will lead to demonstration of OLAE chips and tags with EPC-like performance, in particular showing: (i) bi-directional communication (i.e. the tag can understand and talk to the reader); (ii) EPC-compatible bit rates of 25 kbit/s; (iii) the first UHF (867 MHz) OLAE tags.The partners of the project are uniquely placed to realize these ambitious challenges. POLYIC is the first company, which demonstrated RFID tags produced by roll to roll printing. EVONIK develops unique oxide semiconductor materials. IMEC and TNO recently made the OLAE chip with the largest memory (128 bits) and a rectifier working at ultrahigh frequency.

ORICLA will be the world's benchmark for RFID performance with Organic and Large Area Electronics, OLAE. RFID is an important technology e.g. in logistics, to transmit an identification code by radio waves (at high frequency (HF) or ultra-high frequency (UHF) between a transponder and a reader. The Electronic Product Code (EPC) protocol has been developed for use in high volume RFID logistic applications. EPC tags are widely used today on pallet level, and will later be used for packages and ultimately on item level. Such tags could also capture and transmit information on the environment (e.g. temperature) of the object of which they carry the identification. Thus, they will enable the vision of creating smart objects.OLAE technologies have key assets to capture large markets in this business: they allow to strongly reduce cost compared to Si chips, and simultaneously offer true mechanical flexibility, required for integration of tags onto items. Today OLAE RFID tags are limited in performance. The ORICLA partners will realize new OLAE chip technologies, based on complementary logic with organic and oxide semiconductors and on self-aligned imprint lithography as upscaleable patterning technology that can provide suitable dimensions. This unique combination will lead to demonstration of OLAE chips and tags with EPC-like performance, in particular showing:(i) bi-directional communication (i.e. the tag can understand and talk to the reader);(ii) EPC-compatible bit rates of 25 kbit/s;(iii) the first UHF (867 MHz) OLAE tags.The partners of the project are uniquely placed to realize these ambitious challenges. POLYIC is the first company, which demonstrated RFID tags produced by roll to roll printing. EVONIK develops unique oxide semiconductor materials. IMEC and TNO recently made the OLAE chip with the largest memory (128 bits) and a rectifier working at ultrahigh frequency.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
EU contribution
€ 1 017 855,00
Address
KAPELDREEF 75
3001 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0