Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Integrated Photonic Field-Effect Technology for bio-sensing functional components

Project description


Organic photonics and other disruptive photonics technologies

The objective of this project is to develop a miniaturized cheap and disposable photonic device for bio sensing that is capable of performing quantitative diagnostic tests that are currently limited to a hospital laboratory setting. Our target product is a disposable device for monitoring cardiovascular health - an EU-wide healthcare priority. To date Microfluidic (or Lab-on-a-Chip) devices have not been well suited to point-of-care applications. Although the chips themselves are cheap and small, they must generally be used in conjunction with bulky optical light-sources and detectors. The lack of an integrated, versatile detection scheme is a major obstacle to the deployment of portable diagnostic devices. Consortium partners have demonstrated that integration of organic diodes and photodetectors is a viable route to meet this need. The purpose of this proposal is to develop a radically new generation of devices, in which organic photonic field-effect transistors are used for both light generation and detection. The use of transistors in place of diodes has four principle benefits. Firstly they can be pre-fabricated on the substrate (the microfluidic chip), ensuring optimal registration between the organic photonic components and the underlying fluidic architecture. Secondly the devices can be completed by depositing a single layer of organic semiconductor followed by the gate electrode, thus avoiding the need for complex multilayered structures. Thirdly in-plane light generation by the transistors provides improved optical coupling into wave-guiding structures, leading to significant performance gains. And fourthly current-multiplying auxiliary transistors can also be included thereby enabling immediate amplification of the signal at the point-of-generation. In combination these factors offer a compelling solution to the challenge of point-of-care detection that will offer unprecedented sensitivity and superior reliability at a markedly reduced cost

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

CONSIGLIO NAZIONALE DELLE RICERCHE
EU contribution
€ 547 044,00
Address
PIAZZALE ALDO MORO 7
00185 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

My booklet 0 0