Objective
Sustainable development in information technology calls for an ever increasing information processing and storage capability. A promising route to maintain exponential growth capability, i.e. to keep on the Moore's roadmap, is to turn to the electron spins as information carriers rather than their charge. This field, spintronics, has enormous potential whose exploitation requires solid knowledge in the fundamentals of spin dynamics and spin transport. Herein, novel nanomaterials are suggested for spintronics purposes, such as graphene and single-wall carbon nanotubes (SWCNTs). These, fundamental two- and one-dimensional carbon allotropes are promising candidates for such purposes, carbon being a light element with a low spin-orbit coupling which results in a long spin coherence. There are several fundamental open issues, e.g. the dominant spin orbit coupling mechanism in graphene, whether bulk electron spin resonance can be observed for this material, and the length of the spin diffusion length. For SWCNTs, the ground state of isolated metallic tubes is known to be the Tomonaga-Luttinger liquid (TLL), which greatly limit the spin coherence, but it is at present open whether this state is destroyed when an ensemble of interacting metallic tubes is studied. The decay time and spin symmetry of optical excitations (excitons) in semiconducting SWCNTs is yet unknown.
Our goal is to pursue electron spin resonance in graphene and carbon nanotubes and to perform optically detected magnetic resonance in carbon nanotubes. We will commission a magnetoptical spectrometer with a substantial added value.
The expected results are characterization of spin transport capabilities of these materials and understanding of the spin decoherence mechanisms. The PI leads magnetic resonance studies of these materials, shown by his more than 300 citations to this field (the total being over 470) and his 15 Physical Review Letters papers in this field (of which for 9 he is main Author).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2010-StG_20091028
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1111 Budapest
Hungary
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.