Objective
Electronic excitations play an important role in several biological processes, such as photosynthesis and vision, as well as in technological applications like lighting materials---making the calculation of excitation energies an interesting and up-to-date challenge.
Of special interest are influences of solvent molecules such as water or acetone.
Typically (time-dependent) density-functional theory is used for larger systems but is not appropriate when charge-transfer comes into play.
We propose to study local (charge-transfer) excitations of molecules in solution by embedding wave-function theory (WFT) in density-functional theory (DFT) and explicitly taking into account the coupling of the subsystems which is expected to be crucial for high accuracy.
As an accurate but cost-efficient method, we will use the coupled-cluster CC2 model for the wave-function part and derive equations which contain the coupling of the WFT part and the environment to be described with DFT.
This model can easily be extended to CCSD or CCSD(T) at a later stage.
The new equations will then be implemented in a computer program.
The proposed work consists not only of method development but also of the application of the newly developed tools to state-of-the-art chemical questions.
With the new methodology, we are able to compute accurate excitation energies for complex solvated systems.
This enables us to model light harvesting components of biologically inspired photosynthetic devices that are currently under development in Amsterdam.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2010-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1081 HV Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.