Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Ultra-versatile Nanoparticle Integration into Organized Nanoclusters

Objective

UNION will develop nanoparticle (NP) assembly techniques, and assembly monitoring technologies to prepare novel hierarchically-ordered nanoparticle clusters (NPCs).
By improving control over the synthesis and assembly of NPs we will produce materials with tailored and predictable properties. Furthermore, by incorporating hierarchical control into the assembly (through the type, size and spatial distribution of the NPs) it will be possible to assess the influence of the hierarchy on properties and develop new functionalities. UNION will investigate how the emergent properties of the assemblies are determined by the architecture of the assembly, the extent of order, and the properties of the component NPs. This will enable tuning of the primary NP properties and the assembly processes to develop significant breakthroughs in nano-devices and next generation complex nanotechnology products.
As the ultimate aim is commercial exploitation of our results, in each stage of the development process we will use application driven, scalable and cost-effective processes, incorporating EHS assessment and roadmap preparation towards future industrial deployment.
UNION will achieve its objectives through a three stage approach.
- Improved NP preparation providing optimised surface chemistry for subsequent assembly
- Novel NPC formation (hierarchical nanoparticle assembly) methods
- Roll-out of NPCs for three application areas

NPC applications will be developed within three core areas corresponding to the different hierarchical structural levels; in suspensions of individual NPCs (biomedical), in supported 2D NPC arrays (optical), and in 3D arrays or nanocomposites (thermoelectric).
Our consortium is comprised of multidisciplinary research groups involving 8 partners with ex-pertise in preparation and application of nano-materials. It includes significant industrial participation with 4 companies with specific knowledge and testing capability for the target application areas.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2012-SMALL-6
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

DUBLIN CITY UNIVERSITY
EU contribution
€ 791 086,80
Address
Glasnevin
9 Dublin
Ireland

See on map

Region
Ireland Eastern and Midland Dublin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0