Project description
Smart Factories: Energy-aware, agile manufacturing and customisation
Hard materials machining has recently attracted great attentions from the European automotive, the aerospace and the biomedical industries. However, the existing technology failed to cope efficiently with small-batch production of large and complex-shaped products. The project Hephestos shall give rise to a cost-efficient solution in hard materials machining for this small-batch production of highly customized products through the application of industrial robots. Hephestos will develop a paradigm to provide standard industrial robots with break-through techniques in production planning, programming and real-time control system. Human experience and expertise will also be involved in the entire planning process to develop a plug-and-play flexible robotic metal removal system.
Hard materials machining has recently attracted great attentions from the advanced industries, in particular, the European automotive, the aerospace and the biomedical industries. However, the existing technology failed to provide these industries with a cost efficient solution to cope with small-batch production of large and complex-shaped products. The project Hephestos, with its focus on developing sophisticated methods in robotic manufacturing, shall give rise to a cost-efficient solution in hard materials machining for this small-batch production of highly customized products through the application of industrial robots.
Hephestos will develop a paradigm that shall provide standard industrial robots with break-through techniques in production planning, programming and real-time control system. Based on established computer-aided-manufacturing frameworks, Hephestos will optimize production planning through the automatic generation of robotic program, taking into account specific robot signature i.e. robot system kinematic and dynamic characteristics, as well as models of processes (milling, grinding, polishing etc.), that are essential for the robotic application in hard material machining. To cope with small batch production time scales, real system data obtained by means of advanced sensor techniques will be integrated in the planning to improve efficiency. Human experience and expertise will also be involved in the entire planning process. Real-time strategies based on impedance and force control for the interactions between robot and the cutting of material, will take into account uncertainties and critical chattering effects in hard metal machining. Force-feed control should ensure high quality and precision in grinding and polishing operations and thus, extends the accuracy limits of the robot. Subsequent re-planning and re-programming will enhance the iterative machining process through existing sensor technology.Through this methodology, Hephestos will combine robotic advantages with the flexibility of human-like strategies of dexterous artisans and workmen to develop a plug-and-play flexible robotic metal removal system. In addition, Hephestos would utilize and further develop flexible and truly open robot control and planning platforms.The key innovations of the Hephestos will ensure substantial improvements of industrial robots technology in hard material machining and establish cost-efficient robotic applications in industry that are of considerable commercial benefits for the European machining sectors, pertinent and affordable to both small-and-medium enterprises and large scale producers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology mechanical engineering manufacturing engineering subtractive manufacturing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- social sciences economics and business economics production economics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-2012-NMP-ICT-FoF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
80686 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.