Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Investigating the Effect of Interface Structure on Friction at the Nanoscale

Objective

The physical phenomenon of friction is the main source of energy “loss” in a number of technical applications and industrial processes. Despite this fact, which holds significant economic importance, a complete understanding of fundamental physical principles governing frictional processes is still lacking. Considering that an ability to predict and control macroscopic friction depends on accurate investigations of friction at the nanometer scale, the research area of nanotribology –the science of friction, lubrication and wear at the nanoscale– has been established about 25 years ago. The main scientific tool that spearheaded developments in this field, the friction force microscope (FFM), provided researchers with a great deal of insight regarding frictional properties of nanoscale “single-asperity contacts” on different substrates as a function of various experimental parameters. Despite this success, many open questions remain regarding friction at the nanoscale, due to inherent limitations of the single-asperity FFM technique in terms of contact area, choice of materials, and poorly-characterized interface structures. Being motivated by recent developments in the field, we propose in this grant application to investigate the frictional properties of structurally well-defined, crystalline gold “nanoislands” on a number of substrates such as graphite and graphene using commercially available atomic force microscopes, as a function of island size, shape and crystallographic direction of motion. Additionally, we propose to use nanoislands made from bulk metallic glass (BMG) in amorphous and crystalline form, to test the influence of interface crystallinity on friction at the nanoscale. It is expected that the 4-year research plan described in this proposal will contribute significantly to the understanding of structure-friction relationships at the nanoscale, bringing the scientific community closer to a complete physical picture of the fundamentals of friction.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

BILKENT UNIVERSITESI VAKIF
EU contribution
€ 100 000,00
Address
ESKISEHIR YOLU 8 KM
06800 BILKENT ANKARA
Türkiye

See on map

Region
Batı Anadolu Ankara Ankara
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0