Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Electromagnetic detection of neural activity at cellular resolution

Project description


FET Proactive: Neuro-Bio-Inspired Systems (NBIS)

The main goal of the project is to develop a new generation of neuroscience tools for electromagnetic measurement and spectroscopy at the neuron level.Spin electronics offers nowadays the possibility to create very sensitive, micrometer-scale magnetic field detectors. Here, we propose to exploit this technological advance to create novel tools for probing neuronal magnetic fields at the cellular level. The first goal of the project will be to develop the magnetic equivalent of an electrode, a 'magnetrode', sensitive enough to detect the very small magnetic fields induced by the ionic currents flowing within electrically active neurons, and small enough to probe a limited number of cells. We will adapt magnetrodes also for local nuclear magnetic resonance spectroscopy (MRS); thus, they could record both electromagnetic and chemical activity of neurons. In addition, means for local electric or magnetic stimulation could be integrated in to a magnetrode. We will test magnetrodes in vitro and in vivo at various spatial scales, from brain areas down to single neurons. In parallel, based on the measurements with magnetrodes, we will augment existing computational models and develop new ones to characterize the electromagnetic fields emitted by neurons and neuron assemblies. We will use these models to bridge from the activity of single neurons to macroscopic non-invasive measurements such as electroencephalography (EEG) and magnetoencephalography (MEG).This project shall pave the way towards "magnetophysiology", which enables investigating electric activity of neurons without disturbing the ionic flow and without physical contact to the cell. We will create new experimental and modeling tools for magnetic measurements and stimulation at neuron scale. The resulting techniques will be applicable in neurosciences, brain–computer interfacing and possibly in the treatment of certain brain diseases.The consortium is composed of 5 teams from 4 EU countries.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-9
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
EU contribution
€ 510 478,00
Address
RUE LEBLANC 25
75015 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0