Objective
An optical network, like any system, has to be observable before it can become controllable and be subject to optimization, and this is the first capability ORCHESTRA introduces. ORCHESTRA’s high observability relies on information provided by the coherent transceivers that are extended, almost for free, to operate as software defined multi-impairment optical performance monitors (soft-OPM). Information from multiple soft-OPMs are correlated using network kriging and statistical estimation methods to infer information for unmonitored or un-established paths, effectively support alien wavelength, and localize QoT problems and failures.
High rate optical transmission with coherent detection promises to address the continuous growth of Internet traffic. However, the current control and monitoring (C&M) infrastructure is absolutely not adequate to support this growth. In ORCHESTRA, a new C&M architecture that exploits the monitoring and reconfigurability capabilities of enhanced tubable transceivers will be designed, implemented and validated. The network is viewed as a continuously running process that perceives current conditions, decides, and acts on those conditions. ORCHESTRA’s advanced cross-layer optimization procedures will be implemented within a new specifically designed library module, called DEPLOY. A new dynamic and hierarchical C&M infrastructure will be then created to interconnect the multiple soft-OPMs and the proposed virtual and real C&M entities running the DEPLOY algorithms. At the top of the hierarchical infrastructure, a novel OAM Handler prototype will be implemented, as part of the SDN-based ABNO architecture. The proposed C&M infrastructure will be enriched with active-control functionalities, closing the control loop, and enabling the network to be truly dynamic and self-optimized.
The ORCHESTRA solutions are planned to be industrialized, given the expected improvements in service level validations, CAPEX, energy consumption and OPEX.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences internet transport layer
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences mathematics pure mathematics topology
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks optical networks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.1.3. - Future Internet: Software, hardware, Infrastructures, technologies and services
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
26 504 PATRAS
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.