Objective
The present proposal aims to enhance the competences, the scientific and innovative potential of the experienced researcher in the field of the emerging non-invasive treatment of a variety of cancer tumour types called photodynamic therapy (PDT). This approach induces tumour cells necrosis and/or apoptosis by a combination of a photosensitising drug (PS) capable of absorbing within the body’s therapeutic window (620–850 nm), a light source (e.g.,a laser) of an appropriate wavelength and molecular oxygen. To further advance the novel PDT treatment, the design, synthesis and characterisation of new photosensitizers with improved efficiency and side effect profiles is needed, together with a more thorough and integrated understanding of the multitude of targets/actions so far ascribed to PDT.
In this field, the information that can be gained from modern theoretical methods is very useful, since several crucial chemical and physical properties of candidate photosensitizers can be accurately predicted from first principles by various computational techniques, contributing to increase the understanding of the entire photochemical pathways involved. The “a priori” knowledge of a series of properties can be considered a basic requirement before proceeding to the synthesis, chemical-physical characterisation and in vitro and in vivo tests, thus orienting experimental planning and avoiding expensive and time-consuming experiments.
The project attempts to investigate members of a novel and very interesting class of bioactive molecules of interest as anti-cancer agents, consisting of a light-absorber chromophore (PS) and a cisplatin-like unit.
The two-component conjugates combine the cytostatic activity of the platinum moiety in the dark, and upon irradiation, the photodynamic action of the sensitizer. Such systems could address the restrictions of Pt-based complexes and provide a target for PDT agents, while maintaining efficient DNA binding and photocleaving properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics DNA
- natural sciences chemical sciences inorganic chemistry transition metals
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences biophysics
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75231 PARIS CEDEX 05
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.