Objective
ChemSniff will develop a multi-mode sniffer device for real-time detection of chemical compounds contained in CBRN-E substances. This will enable high throughput screening of soft targets such as vehicles, people and their personal effects.
The technology is based on a linear ion trap (LIT) mass spectrometer (MS) operating in a non-scanning mode. A non-scanning LIT allows selective ion monitoring of target threat molecules using optimal voltages for each ion mass without performing a full mass spectral scan. This result is higher sensitivity, simpler control electronics, smaller size, lower power consumption and cost. The limits of detection of LIT-MS instrument are in low parts per billion (ppb) with parts per trillion (ppt) levels achievable with suitable analyte enrichment provided by a pre-concentrator. Once the MS fingerprint of an unknown substance is measured, it can be compared online with a database of known substances enabling real-time rapid identification.
In 2014 pre-prototype instrument was demonstrated in FP7 Project SNIFFLES. ChemSniff will develop a more compact MS-based than existing instruments on the market with extra capability for rapid scans of solid surfaces using suitable atmospheric ionisation inlet. Methods for miniaturisation will be applied to all key components including the vacuum system, which is the most robust part. This will be done through improved designs based on results from numerical modelling, operational designs, novel low-cost 3D printing manufacturing, electronics simplification and vacuum system optimisation.
The final instrument will allow reduced acquisition/operating costs, greater mobility, user friendliness and flexibility. Performance will be benchmarked against a state-of-the-art conventional MS system for in-field analysis The project outcome will be an automated portable MS-based sniffer device, tested and evaluated for a range of security applications and markets by end-users.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences databases
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.7. - Secure societies - Protecting freedom and security of Europe and its citizens
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME - SME instrument
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3047 BP Rotterdam
Netherlands
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.