Objective
Despite written language is not part of our genetic endowment, literate adults process an impressive amount of information as they read, and do that extremely flawlessly and nearly error-free. How this happens is largely unknown, and represents a fundamental issue for theories of human learning. Building on data from nonhuman primates, human infants and psycholinguistic experiments on word internal structure, STATLEARN tests the hypothesis that one fundamental cognitive mechanism underlies visual word identification, i.e. statistical learning. Human infants learn to chunk smaller perceptual units (e.g. oriented lines) into larger, meaningful objects (e.g. tools, faces), taking advantage of recurrent patterns in their distribution. As developing readers, they would apply this very same mechanisms to a newly–encountered type of visual objects, i.e. letters. On this basis, they would build progressively higher–order orthographic units, which eventually make their visual word identification as adult readers astonishingly efficient.
The project is composed of four work packages. One aims at identifying which principle(s) drive(s) statistical learning, and contrasts overall frequency, contextual diversity, and letter transitional probabilities. Because these factors co-vary in real languages, a second work package will involve adult readers in learning artificial languages, where we will build in any statistical properties we might need to test. A third package will seek signs of statistical learning directly into the performance of developing readers. A fourth package will assess positional constraints in the identification of morphemes (e.g. kind and ness in kindness). These work packages include behavioural, eye tracking, ERP, MEG and fMRI work. Bringing together evidence from such a wide array of approaches will allow to understand how statistical learning unfolds, and what kind of representations it brings into the human reading system.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences zoology mammalogy primatology
- natural sciences biological sciences neurobiology
- humanities languages and literature linguistics
- social sciences psychology cognitive psychology
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34136 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.