Project description
Hybrid-electric propulsion: one electric power control module, two types of power production
Hybrid-electric propulsion will help reduce the aviation sector’s emissions, as part of the push to meet the Green Deal’s 2050 environment goals. The EU-funded MAHEPA project advances the technological readiness of two variants of a low-emission, high-efficiency, serial hybrid-electric-propulsion architecture. They use the same power control module (comprising a highly efficient, airborne-qualified electric propulsion motor and next-generation inverter technology) but different ways to produce power, through a flexible modular approach. One variant combines the power control module with a hydrocarbon-fuelled internal combustion engine and an electric generator to produce power, while the other uses a hydrogen fuel cell. The technologies will be flight tested for small aircraft.
Objective
The overall objective of MAHEPA is to bridge the gap between the research and product stage of a low emission propulsion technology to meet the environmental goals for aviation towards the year 2050. Two variants of a low emission, high efficiency, serial-hybrid-electric propulsion architecture will be advanced to TRL 6: the first uses a hydrocarbon fuelled internal combustion engine and an electric generator as primary power source, while in the second a hydrogen fuel cell is used to produce power showcasing the flexibility of the architecture. Common to both variants is the power control module, used to implement advanced power management methods to optimize mission, range and emissions of hybrid electric aircraft, and the new power electronic devices namely a highly efficient, airborne qualified electric propulsion motor and next-generation inverter technology. The modular approach is further demonstrated by integration and flight testing of each variant on a different small aircraft to showcase flexibility and scalability of the powertrain. A visionary implementation study towards commercial/transport category aircraft rounds up the project. The core value of MAHEPA is to build-up technological know-how and use flight test data to validate performance, efficiency and emission reduction capabilities of above technologies. This will allow to make conclusions about the suitability of these solutions towards megawatt-scale hydrocarbon driven hybrids and zero-emission hydrogen-powered solutions. For small aircraft this propulsion system development can be the door opener for a commercialized, new, low emission, highly efficient airplane category.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences organic chemistry hydrocarbons
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MG-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5270 Ajdovscina
Slovenia
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.